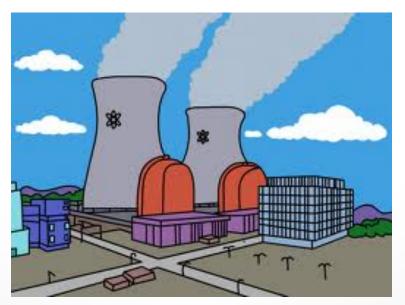

Nuclear Chemistry Sections 10.1-10.3

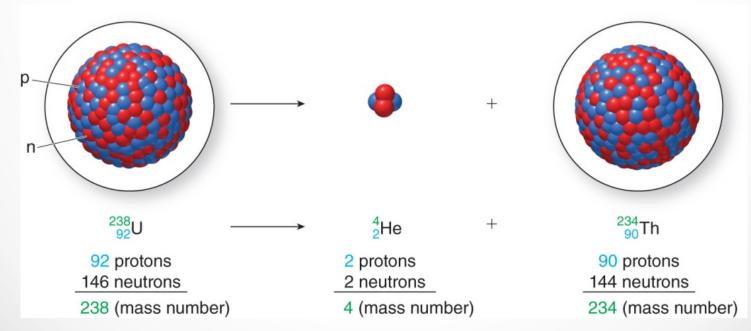
- Recall isotopes are atoms with different numbers of neutrons
- Not terribly important when dealing with chemical reactions which are based on electron interaction
- More important when dealing with nuclear chemistry – only nucleus interactions
- Protons and neutrons make up the nucleus


Radioisotope

- Also known as radioactive isotope
- Naturally occurring
- Unstable
- Spontaneously undergoes a reaction to reach stability – radioactive decay

Nuclear Reactions

- Different from regular chemical reactions in 3 ways
- Change in atom's nucleus, produces new element
- Isotopes can have drastically different reactivity
- Energy change is significantly higher



Radioactivity

- Different forms of radioactivity yield different particles
- Particles are emitted, meaning they are products
- Alpha particles (α)
- Beta particles (β)
- Positrons (β^+)
- Gamma radiation (γ)

Alpha Decay (α)

- An alpha particle is a high energy particle that consists of two protons and two neutrons
- The same as a helium nucleus
 - Remember, no electrons in nuclear chemistry
- Written as α or $\frac{4}{2}He$

Alpha Decay

- New nucleus has two fewer protons and two fewer neutrons
- Overall mass number will decrease by four
- Proton number changes so you will have a new element
- Alpha particle is a product of the reaction

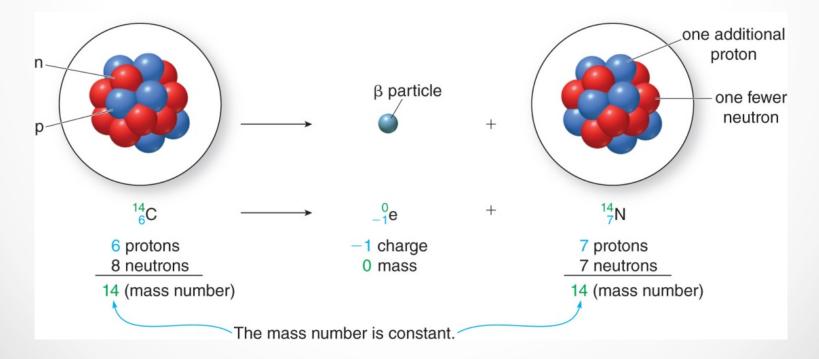
$$241 = 4 + 237$$

$$241 = 4 + 237$$

$$95 = 2 + 93$$

$$4^{2}He + 237 = 93$$

Beta Decay (β)


- A beta particle is formed when a neutron in the nucleus decays into a proton
- In this process an electron is emitted and this is a beta particle

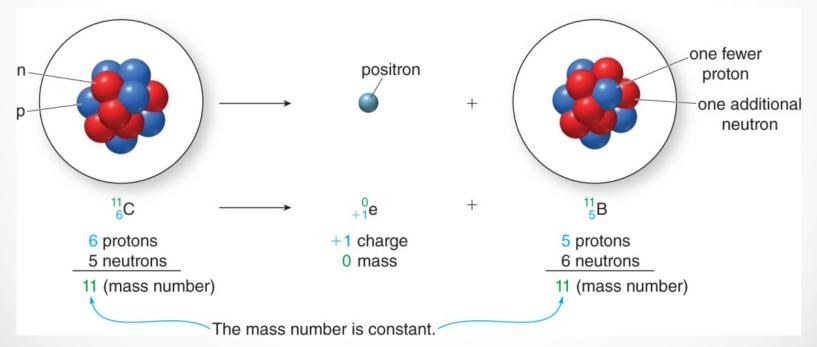
$${}^{1}_{0}n \rightarrow {}^{1}_{+1}p + {}^{0}_{-1}e \qquad \text{beta particle}$$

$${}^{32}_{15}P \longrightarrow {}^{0}_{-1}e + {}^{32}_{16}S$$

Beta Decay

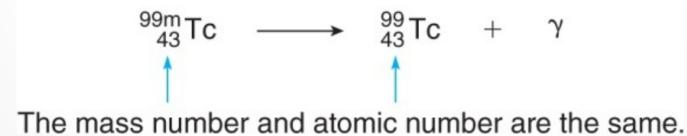
- New nucleus has one more proton so it is an all new element
- New nucleus has one fewer neutron, so the overall mass number doesn't change

Positron Decay (β⁺)


- A positron particle is formed when a proton in the nucleus decays into a neutron
- In this process an positive electron is emitted and this is a positron particle (positive electron)

$${}^{1}_{+1}p \rightarrow {}^{1}_{0}n + {}^{0}_{+1}e \quad \text{positron particle}$$

$${}^{18}_{9}F \longrightarrow {}^{0}_{+1}e \quad + \quad {}^{18}_{8}O$$


Positron Decay

- New nucleus has one fewer proton, so it is an all new element
- New nucleus has one more neutron so the overall mass number doesn't change

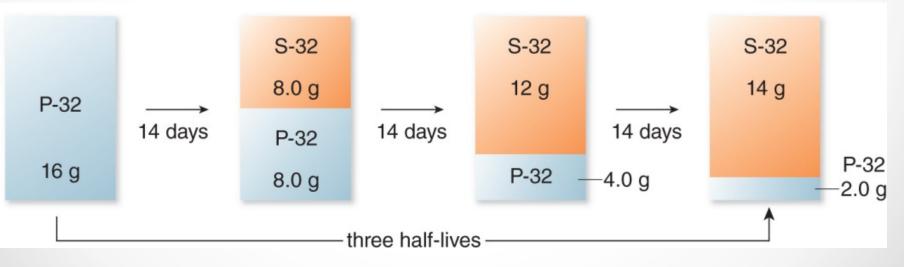
Gamma Decay

- A nucleus that undergoes gamma decay gives off energy, not a particle
- Gamma decay has no mass or charge, it is simply a large amount of energy
- No change in atomic number or mass number
- Usually accompanies another type of radiation

Write the equations of the following nuclear reactions:

- a. Alpha decay of ²³⁵U
- b. Beta decay of ²⁰F
- c. Positron emission of ²³Mg
- d. Beta decay of ⁶³Ni
- e. Positron emission of ¹¹C
- f. Alpha decay and gamma emission of ¹⁴N

Example #1 Solved


a. ${}^{235}U \rightarrow \alpha + {}^{231}Th$ b. ${}^{20}F \rightarrow \beta + {}^{20}Ne$ c. ${}^{23}Mg \rightarrow \beta^+ + {}^{23}Na$ d. ${}^{63}Ni \rightarrow \beta + {}^{63}Cu$ e. ${}^{11}C \rightarrow \beta^+ + {}^{11}B$ f. ${}^{14}N \rightarrow \alpha + {}^{10}B + \gamma$

Half Life

- Given that the radioisotopes decay, it is important to know how long this takes
- Use the idea of **half life** $(t_{1/2})$ to measure decay
- Half life is the time it takes for half of a sample to decay
- Half life is a property of a given isotope and is independent of amount of sample

Half Life

- Half life is different for each type of isotope
- Half life can range from nanoseconds to thousands of years
- Ex. the half life of ³²P is 14 days

Half Life

Table 10.2 Half-Lives of Some Common Radioisotopes

Radioisotope	Symbol	Half-Life	Use
Carbon-14	¹⁴ ₆ C	5,730 years	Archaeological dating
Cobalt-60	⁶⁰ 27 Co	5.3 years	Cancer therapy
lodine-131	¹³¹ ₅₃ I	8.0 days	Thyroid therapy
Potassium-40	40 19	$1.3 imes 10^9$ years	Geological dating
Phosphorus-32	³² ₁₅ P	14.3 days	Leukemia treatment
Technetium-99m	^{99m} 43 Tc	6.0 hours	Organ imaging
Uranium-235	²³⁵ 92	$7.0 imes10^8$ years	Nuclear reactors

The half life of iodine-131 is 8.0 days. How much of a 250. g sample of iodine-131 remains after 32 days?

Example #2 Solved

Determine how many half lives have passed

$$32 days \times \frac{1hl}{8.0 days} = 4.0 hl$$

For each half life, multiply the initial mass by ¹/₂

$$250.g \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = 15.6g$$

Write the equations of the following nuclear reactions:

- a. Gamma emission of ¹¹B
- b. Beta decay and gamma emission of ⁴⁰K
- c. Alpha decay of ²¹⁸Po
- d. Positron decay of ⁷⁴As

If a 160. mg sample of technetium-99m is used for a diagnostic procedure, how much Tc-99m remains after each interval:

- a. 6.0 h
- b. 18.0 h
- c. 24.0 h
- d. 2 days