Worksheet: Energy

Key

- 1. In the reaction of one mole of carbon with oxygen gas, the energy of the carbon dioxide product is 393 kJ lower than the energy of the reactants.
 - a. Is the reaction exothermic or endothermic?

b. Write the equation for the reaction, including the heat of the reaction.

$$C(s) + O_2(g) \rightarrow CO_2(g) + 393 \text{ kJ}$$

c. What is the value, in kilojoules, of the ΔH for this reaction?

negative OH because exothermic

2. In the formation of two moles of ammonia, NH_3 , from hydrogen and nitrogen, 92.2 kJ of heat is released.

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g) + 92.2 \text{ kJ}$$

How much heat, in kilojoules, is released when 50.0g of ammonia is produced?

50.0g NH3 ×
$$\frac{1 \text{ mol NH}_3}{17.03 \text{ gNH}_8}$$
 × $\frac{92.2 \text{ kJ}}{2 \text{ mol NH}_3}$ = $\frac{135 \text{ kJ}}{\text{are produced}}$

3. Mercury (II) oxide decomposes to mercury and oxygen.

$$2\text{HgO}(s) \rightarrow 2\text{Hg(l)} + O2(g)$$
 $\Delta H = +182\text{kJ}$

- a. Is the reaction endothermic or exothermic? endothermic
- b. How many kilojoules are needed to react 25.0g of mercury (II) oxide?

25.09 Hg0 × 1 mol Hg0 ×
$$\frac{182 \text{ kJ}}{2 \text{ lb.6 g Hg0}}$$
 = $\frac{10.5 \text{ kJ needed}}{16 \text{ react}}$