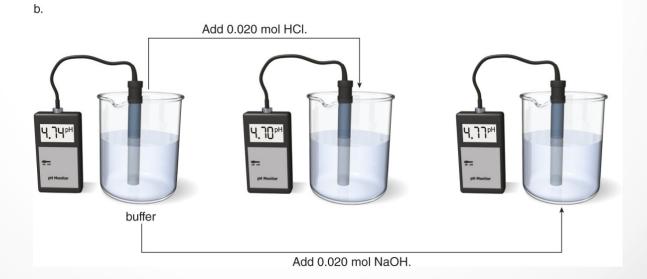
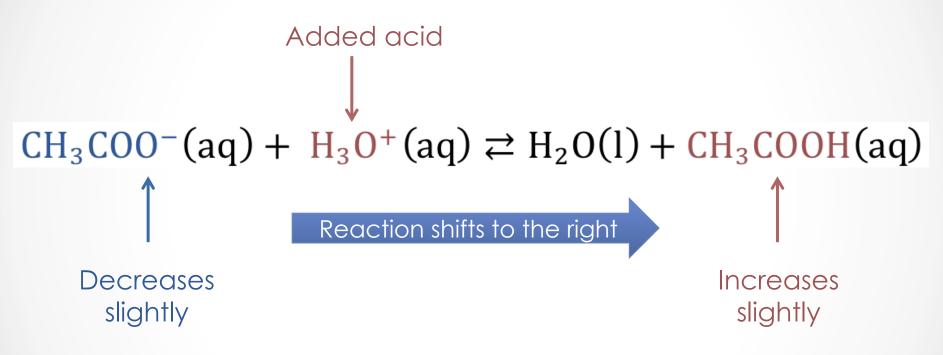
Sections 9.10

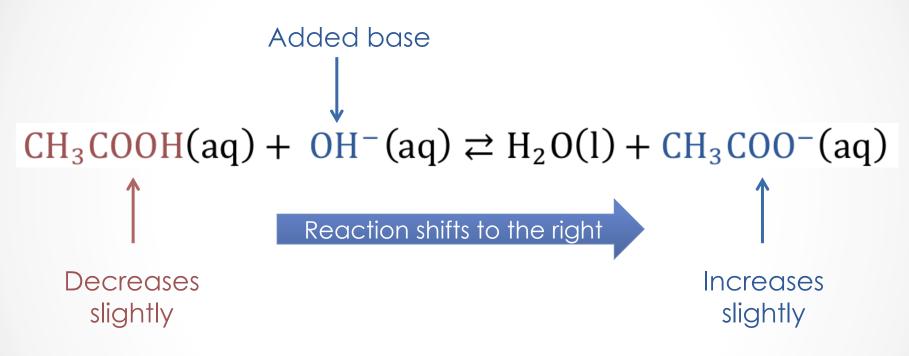

- A solution that is resistant to changes in pH
- Needs to be able to neutralize any added acid or base
- Must contain both an acid and a base
- Most are solutions made up of a weak acid and the salt of its conjugate base
- Usually in equal amounts

- Weak acid component reacts with any added base, OH-
- Conjugate base component reacts with any added acid, H₃O⁺


Water (not a buffer)

Acetic acid buffer

Adding Acid



$$\frac{[CH_3COOH]}{[CH_3COO^-]} \leftarrow$$

- The ratio does not change much
- [H₃O⁺] does not change much

•5

Adding Base

$$\frac{[CH_3COOH]}{[CH_3COO^-]} \leftarrow$$

- The ratio does not change much
- [H₃O⁺] does not change much

Common Buffer Systems

Buffer	Weak Acid	Conjugate Base	K _a
Acetic acid/ acetate	CH₃COOH	CH ₃ COO-	1.8 x 10 ⁻⁵
Bicarbonate/ carbonate	HCO ₃ -	CO ₃ ² -	5.6 x 10 ⁻¹¹
Dihydrogen phosphate/ hydrogen phosphate	H ₂ PO ₄ -	HPO ₄ ²⁻	6.2 x 10 ⁻⁸
Hydrogen phosphate/ phosphate	HPO ₄ ²⁻	PO ₄ ³⁻	2.2 x 10 ⁻¹³

Determine whether a solution containing each of the following substances is a buffer. Explain your reasoning.

- a. KBr and HBr
- b. HF and NaF
- c. CH₃COOH alone

Example #1 Solved

- a. KBr and HBr: not a buffer, HBr is a strong acid
- b. HF and NaF: **buffer**, HF is a weak acid, NaF is the salt of the conjugate base F-
- c. CH₃COOH alone: **not a buffer**, needs to contain the conjugate base in salt form (ex. NaCH₃COO)

Calculating pH of a Buffer

- Based on the ratio of weak acid concentration to the conjugate base concentration
- Also dependent on the K_a of the weak acid

$$K_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]}$$

$$[H_3O^+] = K_a \times \frac{[HA]}{[A^-]}$$

determines the buffer pH

•10

Calculate the pH of a dihydrogen phosphate/ hydrogen phosphate buffer prepared with 0.10 M NaH₂PO₄ and 0.10 M Na₂HPO₄.

•]]

Example #2 Solved

- $0.10 \text{ M NaH}_2\text{PO}_4$ and $0.10 \text{ M Na}_2\text{HPO}_4$
- HA: $H_2PO_4^-$, A-: HPO_4^{2-} , $K_0 = 6.2 \times 10^{-8}$
- Formula: $[H_3O^+] = K_a \times \frac{[HA]}{[A^-]}$

$$[H_3O^+] = K_a \times \frac{[H_2PO_4^-]}{[HPO_4^{2-}]} = 6.2 \times 10^{-8} \times \frac{[0.10]}{[0.10]} = 6.2 \times 10^{-8} M$$

• Formula: $pH = -log[H_3O^+]$

$$pH = -\log[6.2 \times 10^{-8}] = 7.21$$

Determine whether a solution containing each of the following substances is a buffer. Explain your reasoning.

- a. HCN and KCN
- b. HCl and NaOH
- c. K₂HPO₄ and H₂PO₄

Calculate the pH of a carbonic acid/hydrogen bicarbonate buffer prepared with $0.55 \text{ M} \text{ H}_2\text{CO}_3$ and $0.45 \text{ M} \text{ NaHCO}_3$.

(You will need to look up the K_{α} for carbonic acid)

• 14