Buffers

Sections 9.10

Buffers

- A solution that is resistant to changes in pH
- Needs to be able to neutralize any added acid or base
- Must contain both an acid and a base
- Most are solutions made up of a weak acid and the salt of its conjugate base
- Usually in equal amounts

Buffers

- Weak acid component reacts with any added base, OH^{-}
- Conjugate base component reacts with any added acid, $\mathrm{H}_{3} \mathrm{O}^{+}$

Buffers

Add 0.020 mol NaOH .
b.

Acetic acid buffer

Adding Acid

Added acid

$\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \rightleftarrows \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$
\uparrow Reaction shifts to the right

Decreases slightly

Adding Base

Added base

$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftarrows \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$

A Reaction shifts to the right

Decreases slightly
$\frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]} \leftarrow \begin{aligned} & \text { - The ratio does not chang } \\ & \begin{array}{l}\text { much } \\ {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \text {does not change }} \\ \text { much }\end{array}\end{aligned}$

Common Buffer Systems

Buffer	Weak Acid	Conjugate Base	K_{a}
Acetic acid/ acetate	$\mathrm{CH}_{3} \mathrm{COOH}$	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	1.8×10^{-5}
Bicarbonate/ carbonate	$\mathrm{HCO}_{3}{ }^{-}$	$\mathrm{CO}_{3}{ }^{2-}$	5.6×10^{-11}
Dihydrogen phosphate/ hydrogen phosphate	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	$\mathrm{HPO}_{4}{ }^{2-}$	6.2×10^{-8}
Hydrogen phosphate/ phosphate	$\mathrm{HPO}_{4}{ }^{2-}$	$\mathrm{PO}_{4}{ }^{3-}$	2.2×10^{-13}

Example \#1

Determine whether a solution containing each of the following substances is a buffer. Explain your reasoning.
a. KBr and HBr
b. HF and NaF
c. $\mathrm{CH}_{3} \mathrm{COOH}$ alone

Example \#1 Solved

a. KBr and HBr : not a buffer, HBr is a strong acid
b. HF and NaF: buffer, HF is a weak acid, NaF is the salt of the conjugate base F^{-}
c. $\mathrm{CH}_{3} \mathrm{COOH}$ alone: not a buffer, needs to contain the conjugate base in salt form (ex. $\mathrm{NaCH}_{3} \mathrm{COO}$)

Calculating pH of a Buffer

- Based on the ratio of weak acid concentration to the conjugate base concentration
- Also dependent on the K_{a} of the weak acid

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{K}_{\mathrm{a}} \times \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}
$$

$$
\text { determines the buffer } \mathrm{pH}
$$

Example \#2

Calculate the pH of a dihydrogen phosphate/ hydrogen phosphate buffer prepared with 0.10 M $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ and $0.10 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$.

Example \#2 Solved

- $0.10 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}$ and $0.10 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$
- $\mathrm{HA}: \mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{A}: \mathrm{HPO}_{4}{ }^{2-}, \mathrm{K}_{\mathrm{a}}=6.2 \times 10^{-8}$
- Formula: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{K}_{\mathrm{a}} \times \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=K_{a} \times \frac{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}{\left[\mathrm{HPO}_{4}^{2-}\right]}=6.2 \times 10^{-8} \times \frac{[0.10]}{[0.10]}=6.2 \times 10^{-8} \mathrm{M}
$$

- Formula: $\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

$$
p H=-\log \left[6.2 \times 10^{-8}\right]=7.21
$$

Example \#3

Determine whether a solution containing each of the following substances is a buffer. Explain your reasoning.
a. HCN and KCN
b. HCl and NaOH
c. $\mathrm{K}_{2} \mathrm{HPO}_{4}$ and $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$

Example \#4

Calculate the pH of a carbonic acid/hydrogen bicarbonate buffer prepared with $0.55 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3}$ and $0.45 \mathrm{M} \mathrm{NaHCO}_{3}$.
(You will need to look up the K_{a} for carbonic acid)

