Titration

Section 9.9

Titration

- Used to determine unknown concentrations of acids or bases
- Centered around the idea of neutralization
- When a solution is neutral, moles $_{\text {acid }}=$ moles $_{\text {base }}$

Set Up

- Base goes in buret
- Acid and indicator go in flask
- Indicator: phenolphthalein
- Lightest pink is neutralized

Set Up

b.

c.

Shortcut

- When molar ratios of acid and base are 1:1, you can use $\mathbf{M}_{\mathbf{A}} \mathbf{V}_{\mathbf{A}}=\mathbf{M}_{\mathbf{B}} \mathbf{V}_{\mathbf{B}}$
- Recall, $M_{1} \vee_{1}=M_{2} V_{2}$ from dilution, same concep \dagger
- Only when molar ratios are 1:1
- If not, use regular stoichiometry flow chart

Example \#1

What is the molarity of an HCl solution if 25.5 mL of a 0.24 M NaOH solution are needed to neutralize 15.0 mL of the sample?

Example \#1 Solved

- First, write out a balanced equation

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{NaCl}(\mathrm{aq})
$$

- Second, if you can use short cut, identify variables
- $M_{A}=x$

$$
\begin{aligned}
& M_{B}=0.24 \mathrm{M} \mathrm{NaOH} \\
& V_{B}=25.5 \mathrm{~mL}
\end{aligned}
$$

- $\mathrm{V}_{\mathrm{A}}=15.0 \mathrm{~mL}$
- Solve equation for unknown variable
- $(x)(15.0 \mathrm{~mL})=(0.24 \mathrm{M})(25.5 \mathrm{~mL})$
- $x=0.41 \mathrm{M} \mathrm{HCl}$

Example \#2

How many milliliters of 2.0 M NaOH are needed to neutralize 5.0 mL of a $6.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution?

Example \#2 Solved

- First, write out a balanced equation

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(a q) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{Na}_{2} \mathrm{SO}_{4}(a q)
$$

- Second, if you can't use shortcut, set up flow chart

$$
\begin{gathered}
5.0 \mathrm{mLH}_{2} \mathrm{SO}_{4} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{6.0 \mathrm{molH}_{2} \mathrm{SO}_{4}}{1 \mathrm{~L}} \times \frac{2 \mathrm{molNaOH}_{1 \mathrm{moH}_{2} \mathrm{SO}_{4}} \times \frac{1 \mathrm{~L}}{2.0 \mathrm{molNaOH}} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}=30 . \mathrm{mLNaOH}}{\substack{\uparrow \\
\mathrm{Ne} \\
\mathrm{~L}}} \begin{array}{l}
\text { Molarity } \\
\text { Molar } \\
\text { ratio }
\end{array}
\end{gathered}
$$

- Need 30. mL of NaOH solution

Example \#3

During a titration, it took 11.5 mL of 6.8 M NaOH to neutralize 75 mL of a solution of HCl . What is the molarity of the HCl solution?

Example \#4

How many milliliters of a 0.54 M HCl solution are required to titrate a 47.9 mL sample of $0.83 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ solution?

