pH
 Section 9.6

The pH Scale

- Because $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] is so small, we need a more convenient scale to work with
- Using logarithms to convert, we use the pH scale to determine acidity and basicity
- pH scale is between 0 and 14, no units for pH

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

Logarithm

- A logarithm is an exponent of a power of ten

$$
\log \left(10^{5}\right)=5 \quad \log \left(10^{-10}\right)=-10
$$

- The number of significant figures in the concentration is equal to the number of decimal places in the pH
- When calculating pH, remember to take the negative log

$$
-\log \left(10^{5}\right)=-5 \quad-\log \left(10^{-10}\right)=-(-10)=10
$$

Acidity/Basicity

- A neutral solution has a pH = 7
- An acidic solution has a pH < 7
- A basic solution has a pH > 7
- Because pH is the negative log of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, the higher the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] the lower the pH
- Inverse relationship

Example \#1

Convert each $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$to a pH value.
a. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-12} \mathrm{M}$
b. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.5 \times 10^{-5} \mathrm{M}$
c. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=4.3 \times 10^{-9} \mathrm{M}$

Example \#1 Solved

$$
\text { a. } \begin{aligned}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] } & =1 \times 10^{-12} \mathrm{M} \\
\mathrm{pH} & =-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left[1 \times 10^{-12}\right]=12.0
\end{aligned}
$$

b. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.5 \times 10^{-5} \mathrm{M}$

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left[2.5 \times 10^{-5}\right]=4.60
$$

c. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=4.3 \times 10^{-9} \mathrm{M}$

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left[4.3 \times 10^{-9}\right]=8.37
$$

Calculating $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

- When given the pH of a solution, it is possible to determine the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
- $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}$
- The number of significant figures in the concentration is equal to the number of decimal places in the pH

Example \#2

What $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$corresponds to each pH value?
a. 10.2
b. 7.8
C. 4.3

Example \#2 Solved

a. 10.2

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{oH}}=10^{-10.2}=6 \times 10^{-11} \mathrm{M}
$$

b. 7.8

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}=10^{-7.8}=2 \times 10^{-8} \mathrm{M}
$$

c. 4.3

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}=10^{-4.3}=5 \times 10^{-5} \mathrm{M}
$$

Example \#3

Convert each concentration to a pH value.
a. $\left[\mathrm{OH}^{-}\right]=2 \times 10^{-12} \mathrm{M}$
b. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=4.7 \times 10^{-3} \mathrm{M}$
c. $\left[\mathrm{OH}^{-}\right]=8.6 \times 10^{-8} \mathrm{M}$

Example \#4

What $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$corresponds to each pH value?
a. 2.1
b. 6.3
c. 11.47

