Acid and Base

 StrengthSections 9.3-9.4

Strength

- Determined by the amount of acid (or base) that dissociates in water
- The more dissociation, the stronger the acid (or base)
- A strong acid (or base) dissociates 100% in water
- Use a single reaction arrow
- Product is greatly favored at equilibrium
$\mathrm{HCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
strong acid
conjugate base

Strength

- Weak acids (or bases) only partially dissociate when dissolved in water
- Use double reaction arrow
- Reactants are favored at equilibrium
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$ weak acid conjugate base

Strength

Table 9.1 Relative Strength of Acids and Their Conjugate Bases

Example \#1

Which is the stronger acid in each pair?
a. $\mathrm{H}_{2} \mathrm{SO}_{4}$ or $\mathrm{H}_{3} \mathrm{PO}_{4}$
b. HF or HCl
c. HCN or HF

Example \#1 Solved

a. $\mathrm{H}_{2} \mathrm{SO}_{4}$ or $\mathrm{H}_{3} \mathrm{PO}_{4}$
b. HF or HCl
c. HCN or HF

According to table of relative acid strengths

Equilibrium Direction

- Stronger acid reacts with stronger base to form weaker acid and weaker base

- Equilibrium favors weaker acid

Example \#2

Are the reactants or products favored at equilibrium in the following reaction?
$\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightleftarrows \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq})$

Example \#2 Solved

- Identify the acid in the reactants and the acid in the products

$\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightleftarrows \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq})$ acid

- Identify which is the weaker acid: $\mathrm{NH}_{4}{ }^{+}$
- NH_{4}^{+}is a reactant, so reactants are favored

Dissociation Constants

- A qualitative value which represents amount of dissociation of acid (or base)
- When acids (or bases) reach equilibrium, concentrations are constant just like before

Reaction

Equilibrium
Constant

$$
\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})
$$

$$
\mathrm{K}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

K

- Equilibrium constant, K, from chapter 7
- Same concept, same set up
- For acids, we label it K_{a}

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

acid dissociation constant

K_{a} and Acid Strength

- The stronger the acid, the more dissociation
- The more dissociation, the higher concentration of products, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{A}^{-}\right]$
- The higher the concentrations of the products, the higher the K_{a} value
- The stronger the acid, the higher the K_{a} value

Table 9.2 Acid Dissociation Constants $\left(K_{\mathrm{a}}\right)$ for Common Weak Acids

	Acid	Structure	K_{a}
	Hydrogen sulfate ion	$\mathrm{HSO}_{4}{ }^{-}$	1.2×10^{-2}
	Phosphoric acid	$\mathrm{H}_{3} \mathrm{PO}_{4}$	7.5×10^{-3}
	Hydrofluoric acid	HF	7.2×10^{-4}
	Acetic acid	$\mathrm{CH}_{3} \mathrm{COOH}$	1.8×10^{-5}
	Carbonic acid	$\mathrm{H}_{2} \mathrm{CO}_{3}$	4.3×10^{-7}
	Dihydrogen phosphate ion	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	6.2×10^{-8}
	Ammonium ion	$\mathrm{NH}_{4}{ }^{+}$	5.6×10^{-10}
	Hydrocyanic acid	HCN	4.9×10^{-10}
	Bicarbonate ion	$\mathrm{HCO}_{3}{ }^{-}$	5.6×10^{-11}
	Hydrogen phosphate ion	$\mathrm{HPO}_{4}{ }^{2-}$	2.2×10^{-13}

Example \#3

Rank the following acids in order of increasing strength.
$\mathrm{HCN}, \mathrm{HF}, \mathrm{CH}_{3} \mathrm{COOH}$

Example \#3 Solved

Increasing strength means start with weakest.
$\mathrm{HCN}<\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{HF}$

Example \#4

Which is the stronger base in each pair?
a. CN^{-}or NH_{3}
b. $\mathrm{NO}_{3}{ }^{-}$or OH^{-}
c. Cl^{-}or F^{-}

Example \#5

Are the reactants or products favored at equilibrium in the following reaction?

$\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq}) \rightleftarrows \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Example \#6

Consider the weak acids. HCN and $\mathrm{H}_{2} \mathrm{CO}_{3}$
a. Which acid has the larger K_{a} ?
b. Which acid is stronger?
c. Which acid has the stronger conjugate base?
d. When each acid is dissolved in water, for which acid does the equilibrium lie further to the right?

