Acid and Base Strength Sections 9.3-9.4

Strength

- Determined by the amount of acid (or base) that dissociates in water
- The more dissociation, the stronger the acid (or base)
- A strong acid (or base) dissociates 100% in water
 O Use a single reaction arrow
 - Product is greatly favored at equilibrium

 $\frac{\text{HCl}(aq) + \text{H}_2\text{O}(l) \rightarrow \text{H}_3\text{O}^+(aq) + \text{Cl}^-(aq)}{\text{conjugate base}}$

Strength

- Weak acids (or bases) only partially dissociate when dissolved in water
 - Use double reaction arrow
 - Reactants are favored at equilibrium

$\begin{array}{l} CH_{3}COOH(aq) + H_{2}O(l) \rightleftarrows H_{3}O^{+}(aq) + CH_{3}COO^{-}(aq) \\ \\ \text{weak acid} \\ \end{array}$

Strength

Table 9.1 Relative Strength of Acids and Their Conjugate Bases

	-						
	Acid			Conjugate Base			
	Strong Acids						
	Hydroiodic acid	HI	Г	lodide ion			
ngth	Hydrobromic acid	HBr	Br [_]	Bromide ion			
	Hydrochloric acid	HCI	CI	Chloride ion			
	Sulfuric acid	H_2SO_4	HSO_4^-	Hydrogen sulfate ion			
	Nitric acid	HNO ₃	NO_3^-	Nitrate ion			
I stre	Hydronium ion	H ₃ O⁺	H ₂ O	Water	e stre		
g acid	Weak Acids				j base		
easing	Phosphoric acid	H ₃ PO ₄	$H_2PO_4^-$	Dihydrogen phosphate ion	asing		
Incre	Hydrofluoric acid	HF	F ⁻	Fluoride ion	Incre		
	Acetic acid	CH3COOH	CH ₃ COO⁻	Acetate ion			
	Carbonic acid	H_2CO_3	HCO3-	Bicarbonate ion			
	Ammonium ion	NH_4^+	NH ₃	Ammonia			
	Hydrocyanic acid	HCN	CN⁻	Cyanide ion			
	Water	H ₂ O	OH⁻	Hydroxide ion			

- Which is the stronger acid in each pair?
- a. H_2SO_4 or H_3PO_4
- b. HF or HCI
- c. HCN or HF

Example #1 Solved

- **a.** H_2SO_4 or H_3PO_4
- b. HF or HCI
- c. HCN or **HF**

According to table of relative acid strengths

Equilibrium Direction

 Stronger acid reacts with stronger base to form weaker acid and weaker base

• Equilibrium favors weaker acid

Are the reactants or products favored at equilibrium in the following reaction?

$NH_4^+(aq) + Cl^-(aq) \rightleftharpoons NH_3(aq) + HCl(aq)$

Example #2 Solved

 Identify the acid in the reactants and the acid in the products

$NH_4^+(aq) + Cl^-(aq) \rightleftharpoons NH_3(aq) + HCl(aq)$ acid

- Identify which is the weaker acid: NH_4^+
- NH₄⁺ is a reactant, so reactants are favored

Dissociation Constants

- A qualitative value which represents amount of dissociation of acid (or base)
- When acids (or bases) reach equilibrium, concentrations are constant just like before

Reaction $HA(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + A^-(aq)$ Equilibrium $K = \frac{[H_3O^+][A^-]}{[HA]}$

- Equilibrium constant, K, from chapter 7
- Same concept, same set up
- For acids, we label it K_a

$$K_a = \frac{[H_3O^+][A^-]}{[HA]}$$

acid dissociation constant

K_a and Acid Strength

- The stronger the acid, the more dissociation
- The more dissociation, the higher concentration of products, [H₃O⁺] and [A⁻]
- The higher the concentrations of the products, the higher the $K_{\rm a}$ value
- The stronger the acid, the higher the K_a value

Table 9.2 Acid Dissociation Constants (K_a) for Common Weak Acids

		Acid	Structure	K _a
1		Hydrogen sulfate ion	HSO_4^-	$1.2 imes 10^{-2}$
		Phosphoric acid	H ₃ PO ₄	$7.5 imes10^{-3}$
	6	Hydrofluoric acid	HF	$7.2 imes10^{-4}$
ig acidity		Acetic acid	CH₃COOH	$1.8 imes10^{-5}$
	,	Carbonic acid	H ₂ CO ₃	$4.3 imes10^{-7}$
reasin		Dihydrogen phosphate ion	$H_2PO_4^-$	$6.2 imes10^{-8}$
Inci		Ammonium ion	NH_4^+	$5.6 imes10^{-10}$
		Hydrocyanic acid	HCN	$4.9 imes10^{-10}$
		Bicarbonate ion	HCO ₃ ⁻	$5.6 imes10^{-11}$
		Hydrogen phosphate ion	HPO4 ²⁻	$2.2 imes10^{-13}$

Rank the following acids in order of increasing strength.

HCN, HF, CH₃COOH

Example #3 Solved

Increasing strength means start with weakest.

 $HCN < CH_3COOH < HF$

- Which is the stronger base in each pair?
- a. CN⁻ or NH₃
- b. NO₃⁻ or OH⁻
- c. Cl⁻ or F⁻

Are the reactants or products favored at equilibrium in the following reaction?

 $H_3O^+(aq) + HCO_3^-(aq) \rightleftharpoons H_2CO_3(aq) + H_2O(l)$

- Consider the weak acids. HCN and H_2CO_3
- a. Which acid has the larger K_a ?
- b. Which acid is stronger?
- c. Which acid has the stronger conjugate base?
- d. When each acid is dissolved in water, for which acid does the equilibrium lie further to the right?