Acids and Bases

Sections 9.1-9.2

Arrhenius Acids

An acid produces H⁺ when dissolved in water

$\frac{\text{HCl}(\text{aq}) \rightarrow \text{H}^+(\text{aq}) + \text{Cl}^-(\text{aq})}{\text{acid}}$

 H⁺ doesn't really exist in water, instead the following reaction stakes place

$\mathrm{H^+(aq)} + \mathrm{H_2O(l)} \rightarrow \mathrm{H_3O^+(aq)}$

hydrogen ion (proton) hydronium ion: actually present in aqueous solution

•2

Brønsted-Lowry Acids

- An acid is a proton donor
- H⁺ ion is a proton $HCl(aq) + H_2O(l) \rightarrow H_3O^+(aq) + Cl^-(aq)$
- Acids must contain a hydrogen atom
 May contain more than one hydrogen atom

Common Brønsted–Lowry Acids HCI hydrochloric acid H₂SO₄ sulfuric acid

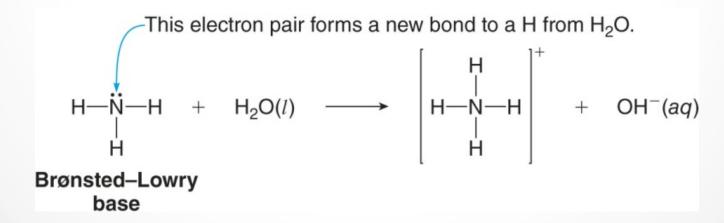
HBr hydrobromic acid HNO₃ nitric acid

Polyprotic Acids

- Acid that contains more than one acidic proton
- HCl is a **monoprotic acid** only one acidic proton
- H_2SO_4 is a **diprotic acid** has two acidic protons
- H₃PO₄ is a **triprotic acid** has three acidic protons

Arrhenius Bases

A base produces OH⁻ when dissolved in water


$NaOH(s) \rightarrow Na^+(aq) + OH^-(aq)$

Brønsted-Lowry Bases

A base is a proton acceptor

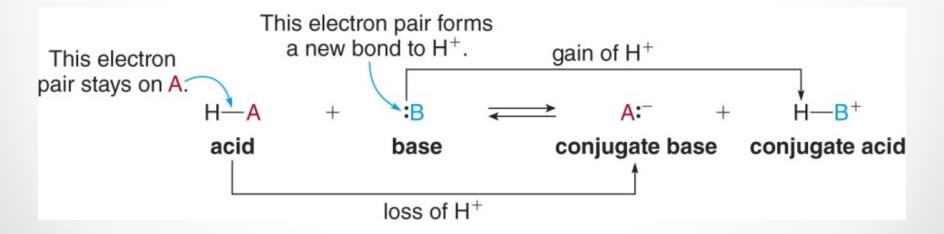
$\mathrm{NH}_{3}(\mathrm{aq}) + \mathrm{H}_{2}\mathrm{O}(\mathrm{l}) \rightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq}) + \mathrm{OH}^{-}(\mathrm{aq})$

A base must contain a lone pair of electrons

Example #1

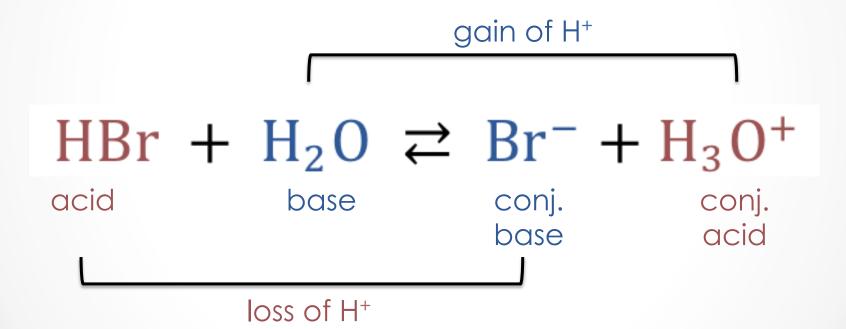
Classify each reactant as a Brønsted-Lowry acid or base.

a. $NH_3(aq) + HCl(aq) \rightarrow Cl^-(aq) + NH_4^+(aq)$ b. $OH^-(aq) + HSO_4^-(aq) \rightarrow H_2O(l) + SO_4^{2-}(aq)$


Example #1 Solved

a. NH₃(aq) + HCl(aq) → NH₄⁺(aq) + Cl⁻(aq)
 HCl is Brønsted-Lowry acid, donates proton
 NH₃ is Brønsted-Lowry base, accepts proton

b. OH⁻(aq) + HSO⁻₄(aq) → H₂O(l) + SO²⁻₄(aq) HSO⁻₄ is Brønsted-Lowry acid, donates proton OH⁻ is Brønsted-Lowry base, accepts proton


Brønsted-Lowry Reactions

- When a Brønsted-Lowry acid reacts with a Brønsted-Lowry base, a proton transfer takes place
- The acid donates the proton and the base accepts it

Conjugate Acid/Base Pairs

A pair of compounds that differ only by one H⁺

- Determine the conjugate base of each species:
- a. H₂S
- b. HCN
- C. HSO_4^-

Example #2 Solved

Conjugate base has one fewer H⁺

- a. H₂S: **HS**⁻
- b. HCN: **CN**⁻
- C. HSO₄-: **SO₄²⁻**

Amphoteric

- A compound that can be both an acid and a base
- Contains both a hydrogen atom (to act as an acid) and a lone pair of electrons (to act as a base)

H₂O as a base H_2^+ H_2^- O as a base H_2^- O $\to H_3^-$ O+

H₂O as an acid

Remove H⁺ $H_2O \rightarrow OH^-$

Which of the following substances are amphoteric?

a. H_2O

b. CO₃²⁻

C. $H_2PO_4^-$

Example #3 Solved

Amphoteric substances can both accept and donate a proton

a. H_2O , can form H_3O^+ and OH^- , **amphoteric**

b. CO₃²⁻, does not contain a proton, **not amphoteric**

c. $H_2PO_4^-$, can form H_3PO_4 and HPO_4^{2-} , **amphoteric**

Example #4

- Which of the following are acids?
- a. NaOH
- b. HBr
- c. NH₃

d. HNO₃

Example #5

Classify each reactant as a Brønsted-Lowry acid or base.

- □. $CH_3COOH(aq) + H_2O(l) \rightarrow CH_3COO^-(aq) + H_3O^+(aq)$
- b. $HF(aq) + HSO_4^-(aq) \rightarrow F^-(aq) + H_2SO_4(aq)$

Determine the conjugate acid of each species:

a. H₂O

b. I-

c. HCO³⁻