Acids and Bases

Sections 9.1-9.2

Arrhenius Acids

- An acid produces H^{+}when dissolved in water

$$
\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$ acid

- H^{+}doesn't really exist in water, instead the following reaction stakes place

$$
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

hydrogen ion (proton)
hydronium ion: actually present in aqueous solution

Brønsted-Lowry Acids

- An acid is a proton donor
- H^{+}ion is a proton
$\mathrm{HCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
- Acids must contain a hydrogen atom
- May contain more than one hydrogen atom

Common Brønsted-Lowry Acids	HCl hydrochloric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$ sulfuric acid
	HBr hydrobromic acid	HNO_{3} nitric acid

Polyprotic Acids

- Acid that contains more than one acidic proton
- HCl is a monoprotic acid - only one acidic proton
- $\mathrm{H}_{2} \mathrm{SO}_{4}$ is a diprotic acid - has two acidic protons
- $\mathrm{H}_{3} \mathrm{PO}_{4}$ is a triprotic acid - has three acidic protons

Arrhenius Bases

- A base produces OH^{-}when dissolved in water

$\mathrm{NaOH}(\mathrm{s}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
 base

Brønsted-Lowry Bases

- A base is a proton acceptor
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
- A base must contain a lone pair of electrons

Brønsted-Lowry base

Example \#1

Classify each reactant as a Brønsted-Lowry acid or base.
a. $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{NH}_{4}^{+}(\mathrm{aq})$
b. $\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{HSO}_{4}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{SO}_{4}^{2-}(\mathrm{aq})$

Example \#1 Solved

a. $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$

HCl is Brønsted-Lowry acid, donates proton
NH_{3} is Brønsted-Lowry base, accepts proton
b. $\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{HSO}_{4}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{SO}_{4}^{2-}(\mathrm{aq})$
HSO_{4} is $\mathrm{Br} r$ nsted-Lowry acid, donates proton
OH^{-}is Bronsted-Lowry base, accepts proton

Brønsted-Lowry Reactions

- When a Brønsted-Lowry acid reacts with a BrønstedLowry base, a proton transfer takes place
- The acid donates the proton and the base accepts it

Conjugate Acid/Base Pairs

- A pair of compounds that differ only by one H^{+}

$$
\begin{aligned}
& \text { gain of } \mathrm{H}^{+} \\
& \mathrm{HBr}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{Br}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& \text {acid } \\
& \text { base } \\
& \begin{array}{l}
\text { co } \\
\text { ba } \\
\hline
\end{array} \\
& \text { loss of } \mathrm{H}^{+}
\end{aligned}
$$

Example \#2

Determine the conjugate base of each species:
a. $\mathrm{H}_{2} \mathrm{~S}$
b. HCN
c. HSO_{4}^{-}

Example \#2 Solved

Conjugate base has one fewer H^{+}
a. $\mathrm{H}_{2} \mathrm{~S}: \mathrm{HS}^{-}$
b. $\mathrm{HCN}: \mathrm{CN}^{-}$
c. $\mathrm{HSO}_{4}: \mathrm{SO}_{4}{ }^{2-}$

Amphoteric

- A compound that can be both an acid and a base
- Contains both a hydrogen atom (to act as an acid) and a lone pair of electrons (to act as a base)

Add H^{+}
 $\mathrm{H}_{2} \mathrm{O}$ as a base $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}$

$\mathrm{H}_{2} \mathrm{O}$ as an acid

> | Remove H^{+} |
| :---: |
| $\mathrm{H}_{2} \mathrm{O}$ |
| OH^{-} |

Example \#3

Which of the following substances are amphoteric?
a. $\mathrm{H}_{2} \mathrm{O}$
b. $\mathrm{CO}_{3}{ }^{2-}$
c. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$

Example \#3 Solved

Amphoteric substances can both accept and donate a proton
a. $\mathrm{H}_{2} \mathrm{O}$, can form $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}, amphoteric
b. $\mathrm{CO}_{3}{ }^{2-}$, does not contain a proton, not amphoteric
c. $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$, can form $\mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{HPO}_{4}{ }^{2-}$, amphoteric

Example \#4

Which of the following are acids?
a. NaOH
b. HBr
c. NH_{3}
d. HNO_{3}

Example \#5

Classify each reactant as a Brønsted-Lowry acid or base.
a. $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
b. $\mathrm{HF}(\mathrm{aq})+\mathrm{HSO}_{4}^{-}(\mathrm{aq}) \rightarrow \mathrm{F}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$

Example \#6

Determine the conjugate acid of each species:
a. $\mathrm{H}_{2} \mathrm{O}$
b. ${ }^{-}$
c. HCO^{3-}

