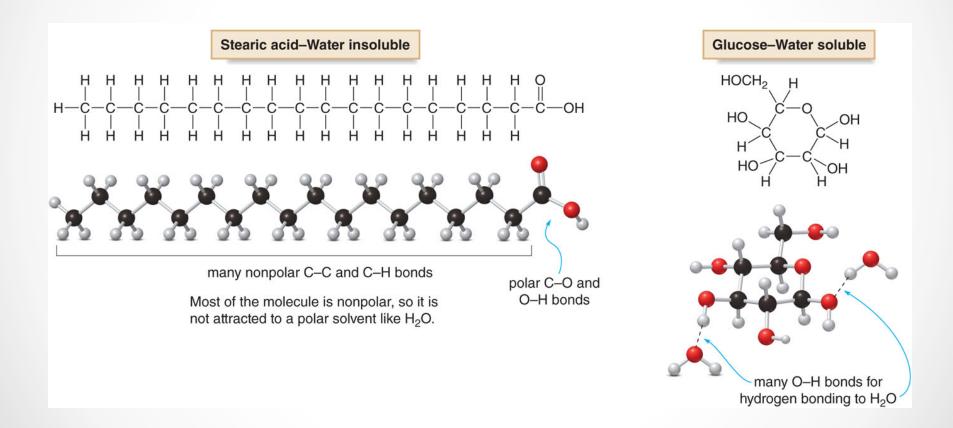


Solubility

- Solubility: the amount of solute that can dissolve in a given amount of solvent
- Usually in g/100 mL
- Unsaturated: if solution contains less than maximum amount of solute in solvent
- Saturated: if solution contains maximum amount of solute in solvent


"Mixability"

- General rules for whether a solute will dissolve in a solvent
- IMF of solute and solvent must be similar in strength
 Encourages strong interactions between solute particles and solvent particles
- Think "like dissolves like"

Like Dissolves Like

- Most ionic compounds and polar covalent compounds are soluble in water, a polar solvent
- Nonpolar compounds are soluble in nonpolar solvents
- This is why oil and water don't mix
 Oil is a nonpolar compound
 - Water is a polar solvent

Like Dissolves Like

- Which compounds are water soluble?
- a. NaNO₃
- b. CH₄
- c. KBr

Example #1 Solved

- a. NaNO₃: ionic compound **soluble in water**
- b. CH₄: nonpolar covalent compound insoluble in water
- c. KBr: ionic compound **soluble in water**

Ionic Solubility

- In general, ionic compounds are soluble in water
- Then again, some are not
- There is a set of general rules for solubility
 You needed this for your "ionic solutions lab"

General Rules for Solubility

lon	<u>Solubility</u>	Exceptions
NO	₃⁻ soluble	none
CIC)₄- soluble	none
CI-	. soluble	except Ag+, Hg ₂ 2+, *Pb ²⁺
-	soluble	except Ag+, Hg ₂ 2+, Pb ²⁺
SO	₄²- soluble	except Ca ²⁺ , Ba ²⁺ , Sr ²⁺ ,
	т	Hg ²⁺ , Pb ²⁺ , Ag ⁺
CO	3 ²⁻ insoluble	
PO	₄ ³ - insoluble	except Group IA and NH ₄ +
-OF	. incoluble	except Group IA, *Ca ²⁺ ,
01		Ba ²⁺ . Sr ²⁺
S ²⁻	insoluble	except Group IA, IIA and
-		NH ₄ +
Na	• soluble	none
NH		none
K+	soluble	none
		*slightly soluble

How to Use Table

- Only need to match one ion, either cation or anion
- "insoluble" means not soluble
- Example: CaSO₄
- Ca^{2+} is not listed under ion list, but SO_4^{2-} is
- Generally SO₄²⁻ is soluble, but Ca²⁺ is an exception so CaSO₄ is insoluble

Use the solubility rules to predict whether the following ionic compounds are soluble in water:

a. Li₂CO₃

b. KBr

c. $Ca_3(PO_4)_2$

Example #2 Solved

a. Li_2CO_3 : Li⁺ is not listed but CO_3^{2-} is

- Generally CO₃²⁻ is insoluble, but Li⁺ is an exception so Li₂CO₃ is soluble
- b. KBr: K⁺ is listed
 - Generally K⁺ is soluble with no exceptions so KBr is **soluble**
- c. $Ca_3(PO_4)_2$: Ca^{2+} is not listed but PO_4^{3-} is
 - Generally PO_4^{3-} is insoluble, Ca^{2+} is not an exception so $Ca_3(PO_4)_2$ is **insoluble**

Effects on Solubility

- Two factors can affect solubility
- Temperature
- Pressure

Temperature Effects

- For most ionic and molecular solids, solubility increases with temperature
 - Think about adding sugar to tea, vs. iced tea
- For gases, the opposite is true, gas solubility decreases with temperature
 - This is because when temperature is increased the gas particles are moving faster and are less likely to interact and mix with solvent particle
 - Similar to the idea of vapor pressure

Pressure Effects

- Changes in pressure affect a gas's solubility in a liquid
- Henry's Law: the solubility of a gas is directly proportional to the partial pressure of the gas above the liquid
- The higher the pressure, the higher the solubility
 - Think about a pressurized can of soda, once the can is opened, the pressure decreases, so the CO₂ gas dissolved in the soda comes out

Example #3

Predict the effect each change has on the solubility of $Na_2CO_3(s)$:

- a. Increasing the temperature
- b. Decreasing the temperature
- c. Increasing the pressure
- d. Decreasing the pressure

Example #3 Solved

- a. Increasing the temperature: increase solubility
- b. Decreasing the temperature: decrease solubility
- c. Increasing the pressure: no effect
- d. Decreasing the pressure: no effect

Example #4

- Which pairs of compounds will form a solution?
- a. Benzene (C_6H_6) and hexane (C_6H_{14})
- b. Na_2SO_4 and H_2O
- c. NaCl and hexane
- d. H_2O and CCI_4

Use the solubility rules to predict whether the following ionic compounds are soluble in water:

a. MgCO₃

b. PbSO₄

c. $MgCl_2$

d. $CaCl_2$

Example #6

Predict the effect each change has on the solubility of $N_2(g)$:

- a. Increasing the temperature
- b. Decreasing the temperature
- c. Increasing the pressure
- d. Decreasing the pressure