Precipitation

Chemical Reactions Lab

Ionic Solubility

- In general, ionic compounds are soluble in water
- Then again, some are not
- There is a set of general rules for solubility

General Rules for Solubility

<u>lon</u>	<u>Solubility</u>	<u>Exceptions</u>
NO ₃ -	soluble	none
CIO ₄ -	soluble	none
CI ⁻	soluble	except Ag+, Hg ₂ 2+, *Pb2+
 -	soluble	except Ag+, Hg ₂ 2+, Pb ²⁺
SO ₄ 2-	soluble	except Ca ²⁺ , Ba ²⁺ , Sr ²⁺ ,
		Hg ²⁺ , Pb ²⁺ , Ag+
CO ₃ 2-	insoluble	except Group IA and NH4+
PO ₄ 3-	insoluble	except Group IA and NH4+
-OH	insoluble	except Group IA, *Ca2+,
		Ba ²⁺ , Sr ²⁺
S ²⁻	insoluble	except Group IA, IIA and
		NH ₄ +
Na+	soluble	none
NH ₄ +	soluble	none
K+	soluble	none
		*sliahtlv soluble

Precipitation Reaction

- When mixing two aqueous solutions, there is a possibility that a combination of ions will form an insoluble compound
- Use solubility table to determine if any combination will form an insoluble solid
- If both products are soluble, then there is "no reaction"

Molecular Equation

- Full chemical equation of both reactants and both products, with physical state listed
- To predict products, switch cations in reactants
- Ex. Write a molecular equation for the reaction between BaCl₂(aq) + Na₂SO₄(aq)

$$BaCl_2(aq)+Na_2SO_4(aq) \rightarrow 2NaCl(aq)+BaSO_4(s)$$

BaSO₄ is a solid according to solubility rules

Ionic Equation

- Break down of the molecular equation
- Break apart any aqueous compound into its individual ions

$$BaCl_2(aq)+Na_2SO_4(aq) \rightarrow 2NaCl(aq)+BaSO_4(s)$$

$$Ba^{2+} + 2Cl^{-} + 2Na^{+} + SO_{4}^{2-} \rightarrow 2Na^{+} + 2Cl^{-} + BaSO_{4}(s)$$

Net Ionic Equation

- Leaves out the extra information from the ionic equation
- The ions that do not change from reactants to products are left out of not ionic equation

$$Ba^{2+} + 2Cl^{-} + 2Na^{+} + SO_{4}^{2-} \rightarrow 2Na^{+} + 2Cl^{-} + BaSO_{4}(s)$$

$$Ba^{2+}+SO_4^{2-} \rightarrow BaSO_4(s)$$
 {Na⁺, Cl⁻}

Na⁺ and Cl⁻ are left out, known as "spectator ions"

Example #1

Write the molecular equation, ionic equation, and net ionic equation for the reaction between $AgNO_3(aq)$ and $BaCl_2(aq)$.

$$BaCl_2(aq) + AgNO_3(aq) \rightarrow$$

Example #1 Solved

- First determine the formulas and solubility of the products
- Molecular equation:

$$BaCl_2(aq)+2AgNO_3(aq) \rightarrow 2AgCl(s)+Ba(NO_3)_2(aq)$$

Ionic equation:

$$Ba^{2+} + 2Cl^{-} + 2Ag^{+} + 2NO_{3}^{-} \rightarrow 2AgCl(s) + Ba^{2+} + 2NO_{3}^{-}$$

Net ionic equation:

$$2Cl^{-}+2Ag^{+} \rightarrow 2AgCl(s)$$
 {Ba²⁺,NO₃}

Example #2

Write the molecular equation, ionic equation, and net ionic equation for the reaction between KOH(aq) and PbCl₂(aq).

• 10

Example #3

Write the molecular equation, ionic equation, and net ionic equation for the reaction between $NH_4CI(aq)$ and $Na_2SO_4(aq)$.

•11