# Concentration 

Sections 8.4-8.5

## Concentration

- Because a solution is made up of a solute and a solvent, we often wish to refer to one amount compared to another
- Concentration: how much solute is dissolved in a given amount of solvent
- Several ways to report this measurement
- Some are percentages
- Some are ratios


## Mass/Mass Percent

- (m/m\%)
- Compares mass of solute to mass of solution
- Mass of solution = mass of solute + mass of solvent
- Usually in grams
- Make sure you LABEL!

$$
\frac{\operatorname{solute}(g)}{\operatorname{solution}(g)} \times 100
$$

## Volume/Volume Percent

- (v/v\%)
- Compares volume of solute to volume of solution
- Volume of solution = volume of solute + volume of solvent
- Usually in mL
solute $(m L)$
solution (mL)
- Make sure you LABEL!


## Mass/Volume Percent

- (m/v\%)
- Also known as weight/volume percent (w/v\%)
- Compares mass of solute to volume of solution
- Usually in $\mathrm{g} / \mathrm{mL}$
- Make sure you LABEL!

$$
\frac{\text { solute }(g)}{\text { solution }(m L)} \times 100
$$

- Similar to density, but not a pure substance


## Example \#1

Determine the concentration of each solution:
a. 2.5 g NaCl dissolved in water to give 109 g of solution (m/m\%)
b. 32 mL of hexane in 524 mL of octane $(\% \mathrm{v} / \mathrm{v})$
c. $4.9 \mathrm{~g} \mathrm{~K}_{2} \mathrm{SO}_{4}$ in 87 mL of solution ( $\mathrm{m} / \mathrm{v} \%$ )

## Example \#1 Solved

a. 2.5 g NaCl dissolved in water to give 109 g of solution (m/m\%)

$$
\frac{\text { solute }(g)}{\text { solution }(g)} \times 100
$$

$$
\frac{2.5 \mathrm{gNaCl}}{109 \mathrm{gsol}{ }^{\prime} \mathrm{n}} \times 100=2.3 \% \mathrm{NaCl}
$$

## Example \#1 Solved

b. 32 mL of hexane in 524 mL of octane ( $\% \mathrm{v} / \mathrm{v}$ )


Solution (mL) = hexane (mL) + octane (mL)
32mLhexane 556 mLsol ' $n$

## Example \#1 Solved

c. $4.9 \mathrm{~g} \mathrm{~K}_{2} \mathrm{SO}_{4}$ in 87 mL of solution ( $\mathrm{m} / \mathrm{v} \%$ )

$$
\frac{\text { solute }(g)}{\text { solution }(m L)} \times 100
$$

$\frac{4.9 \mathrm{gK}_{2} \mathrm{SO}_{4}}{87 m L s o l ' n} \times 100=5.6 \% \mathrm{~K}_{2} \mathrm{SO}_{4}$

## Conversion Factors

- The percent concentrations can be used as conversion factors between solute and solution
- This is why labeling becomes VERY IMPORTANT!!
- Can assume 100 g or mL of solution given a percent concentration


## Example \#2

A drink sold in a health food store contains $0.50 \%$ (m/ v) of vitamin C. What volume would you have to ingest to obtain 1,000 . mg of vitamin C?

## Example \#2 Solved

$0.50 \%(\mathrm{~m} / \mathrm{v})=0.50 \mathrm{~g}$ vitamin C in 100 mL solution
$\frac{0.50 \mathrm{~g}}{100 \mathrm{~mL}}$
$\frac{100 \mathrm{~mL}}{0.50 \mathrm{~g}}$
$1,000 . \mathrm{mg}=1.000 \mathrm{~g}$
$1.000 \mathrm{gC} \times \frac{100 \mathrm{mLsol} ' n}{0.50 g C}=200 \mathrm{mLsol}{ }^{\prime} n$

## Molarity

- Another expression of concentration
- Relates moles of solute to liters of solution
- Units: mol/L, new symbol: M
- For use in stoichiometric calculations because it contains moles

$$
\frac{\text { solute }(\mathrm{mol})}{\text { solution }(L)}
$$

## Example \#3

Calculate the molarity of each aqueous solution with the given amount of NaCl (molar mass: $58.44 \mathrm{~g} / \mathrm{mol}$ ) and final volume.
a. 2.0 mol in 250 mL
b. 12.0 g in 2.0 L

## Example \#3 Solved

a. 2.0 mol in 250 mL
$250 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=0.250 \mathrm{~L}$

$$
\frac{\text { solute }(\mathrm{mol})}{\text { solution }(\mathrm{L})} \quad \frac{2.0 \mathrm{~mol}}{0.250 \mathrm{~L}}=8.0 \mathrm{MNaCl}
$$

b. 12.0 g in 2.0 L
$12.0 \mathrm{gNaCl} \times \frac{1 \mathrm{molNaCl}}{58.44 \mathrm{gNaCl}}=0.205 \mathrm{~mol} \mathrm{NaCl}$

$$
\frac{\text { solute }(\mathrm{mol})}{\text { solution }(\mathrm{L})} \quad \frac{0.205 \mathrm{~mol} \mathrm{NaCl}}{2.0 \mathrm{~L}}=0.103 \mathrm{MNaCl}
$$

## Example \#4

A commercial mouthwash contains 4.3 g of ethanol and 0.021 g of antiseptic in each $30 . \mathrm{mL}$ portion. Calculate the mass/volume percent concentration of each component.
(This sample is looking at two different solutes in a solution)

## Example \#5

How many moles of NaCl are contained in each volume of aqueous NaCl solution?
a. 2.5 L of a 0.25 M solution
b. 25 mL of a 2.0 M solution
c. 250 mL of a 0.25 M solution

